Jayati Kaushik

St. Joseph's University, Bengaluru

Foundations of Data Science BDA2121

Notation and Definitions

Definiton 1

A directed graph (digraph) is a 4-tuple $G = (V, R, \alpha, \omega)$ with the following properties:

- 1. $V \neq \emptyset$ is the vertex set.
- 2. R the set of edges
- 3. $V \cap R = \emptyset$
- 4. $\alpha: R \to V$ and $\omega: R \to V$ are maps where $\alpha(r)$ is the starting vertex of the edge $r \in R$ and $\omega(r)$ is the ending vertex of r.

A graph G is *finite* if both V and R are finite.

Notation and Definitions

Definition 2

Let G be a graph. We call $r \in R(G)$ a loop, if $\alpha(r) = \omega(r)$.

We call r, r' parallel (anti-parallel) if $\alpha(r) = \alpha(r')$ ($\alpha(r) = \omega(r')$)

and $\omega(r) = \omega(r')(\omega(r) = \alpha(r'))$

We call G simple if it does not contain any parallels or loops. In this case, we can identify $r \in R(G)$ with the pair $(\alpha(r), \omega(r))$.

Notation and Definitions

Definition 3

We call $v \in V(G)$ and $r \in R(G)$ incident if $v \in \{\alpha(r), \omega(r)\}$ Two vertices $v \neq u$ are adjecent, if there is an arc r which is incident to u and v.

Notation and Definitions

Definition 4

We call $G = (V, R, \alpha, \omega)$ and $G' = (V', R', \alpha', \omega')$ isomorphic and write $G \cong G'$ if there are bijections $\sigma : V \to V'$, $\tau : R \to R'$ such that for all $r \in R$ we

- 1. $\alpha'(\tau(r)) = \sigma(\alpha(r))$
- 2. $\omega'(\tau(r)) = \sigma(\omega(r))$

Subgraphs

Definition 6

We call $G' = (V', R', \alpha', \omega')$ a subgraph of $G = (V, R, \alpha, \omega)$ if:

- 1. $V' \subseteq V$, $R' \subseteq R$
- 2. $\alpha_{|_{R'}} = \alpha'$, $\omega_{|_{R'}} = \omega'$

We write $G' \sqsubseteq G$

The relation $"\sqsubseteq"$ satisfies:

- 1. $G \sqsubseteq G$ (reflexivity)
- 2. $G \sqsubseteq G', G' \sqsubseteq G \implies G = G'$ (antisymmetry)
- 3. $G \sqsubseteq G', G' \sqsubseteq G'' \implies G \sqsubseteq G''$ (transitivity)

Subgraphs

Induced Subgraphs

Defintion 7

For $S \subseteq V(G)$ we define G[S] to be the subgraph with the vertex S and arc set $\{r \in R : \alpha(r) \in S \text{ and } \omega(r) \in S\}$. We call G[S] the induced subgraph of S in G. Further for $A \subseteq R$ let $G_A := (V, A, \alpha_{|_A}, \omega_{|_A})$

Undirected Graphs

Definition 8

An undirected graph is a triple $G = (V, E, \gamma)$ consisting of a nonempty set V, a set E with $V \cap E = \emptyset$ and a mapping

$$\gamma: E \rightarrow \{X: X \subseteq V, 1 \leq |X| \leq 2\}$$

Incidence and adjacency are defined analogously to the directed case.

Graph Algorithms

Graph Representation

Let
$$n := |V(G)|$$
 and $m := |R(G)|$

Adjacency Matrix Representation

The adjacency matrix A(G) is the $n \times n$ matrix with

$$a_{ij} = \mid \{r \in R : \alpha(r) = v_i \text{ and } \omega(r) = v_j\} \mid$$

Graph Algorithms

Graph Representations

$$\delta^{+}(v) := \{ r \in R : \alpha(r) = v \} \ \delta^{-}(v) := \{ r \in R : \omega(r) = v \}$$

$$\delta(v) := \{ e \in E : v \in \gamma(e) \}$$

Adjacency List Representation

We store n, m and an array Adj[v] of size n Adj[v] is a list of all the arc in $\delta^+(v)$