Graph Algorithms

Jayati Kaushik

St. Joseph's University, Bengaluru

Foundations of Data Science BDA2121

Algorithm for computing $E_G(s)$

```
Input: A Digraph G in adjacency list representation, a vertex
s \in V(G); a marking number p \in \mathbb{N}
1. Set mark[s]:= p and mark[v] := nil \forall v \in V \setminus \{s\}
2. L := (s)
3. while L \neq \emptyset do
4.
       Delete the first element u from L.
5. for all v \in Adi[u] do
6.
          if mark[v] = nil then
7.
              Set mark[v] := p and add v to the end of L.
8.
           end if
       end for
10. end while
11. return E_G(s) := \{ v \in V : mark[v] = p \}
```

Acyclic Graph

Definition

A graph is called acyclic if it has no simple cycle.

Topological Sorting

Defition

A topological sorting of a directed graph $G = (V, R, \alpha, \omega)$ is a bijection $\sigma: V \to \{1, 2, ..., n\}$ such that $\forall r \in R$

$$\sigma(\alpha(r)) < \sigma(\omega(r))$$

Condition for Acyclic

Theorem

G has a topological sorting iff G is acyclic.

Proof ←

If G has a cycle $C = (v_0, \dots, v_k)$ then G cannot have a topological sorting since then:

$$\sigma(v_0) < \sigma(v_1) < \ldots \sigma(v_k) = \sigma(v_0)$$

Topological Sorting

$\mathsf{Proof} \Rightarrow$

The proof is by induction. For, n = 1 it is trivial. Let n > 1.

Let G be acyclic.

Then there is atleast one $\tilde{v} \in V$ with no outgoing edges.

By induction, $G - \tilde{v}$ has a topological sorting σ' . For $v \in V$ we set

$$\sigma(v) = \begin{cases} 1 & v = \tilde{v} \\ \sigma'(v) + 1 & v \neq \tilde{v} \end{cases}$$

Algorithm for Topological Sort

Input: A Digraph in adjacency list representation.

- 1. Compute the indegrees igrad[v] for all $v \in V$.
- 2. Set $L_0 := \{ v \in V : \operatorname{igrad}[v] = 0 \}$.
- 3. **for** i = 1, ..., n **do**
- 4. Delete the first vertex v_i from L_0 and set $\sigma(v_i) = i$.
- 5. for all $r \in \delta^+(v_i)$ do
- 6. Let $w = \omega(r)$ the endvertex of r, igrad[w] := igrad[w] 1.
- 7. **if** igrad[w] = 0 **then**
- 8. Add w to L_0
- 9. **end if**
- 10. end for
- 11. end for
- 12. return σ

Bipartite Graphs

Definition

A graph G is bipartite if there is a partition $V(G) = A \bigcup B$ such that every arc had one end vertex in A and the other in B.

Theorem

An undirected graph G is bipartite iff G has no cycle of odd length.