High Dimensional Space

Jayati Kaushik

St. Joseph's University, Bengaluru

Foundations of Data Science BDA2121

Law of Large Numbers

$$\operatorname{Prob}\left(\left|\frac{x_1+x_2+\cdots+x_n}{n}-E(x)\right|\geq \epsilon\right)\leq \frac{\operatorname{Var}(x)}{n\epsilon^2}$$

The Geometry of High Dimension

$$volume((1 - \epsilon)A) = (1 - \epsilon)^d volume(A)$$

The Geometry of High Dimension

If S is the unit ball in d-dimensions. Then, at least $1-e^{-\epsilon d}$ fraction of the ball is concentrated in S / $(1-\epsilon)S$

Properties of a Unit Ball

Volume of the unit ball

Lemma

The surface area A(d) and the volume V(d) of a unit-radius ball in d-dimensions are given by

$$A(d) = rac{2\pi^{rac{d}{2}}}{\Gamma(rac{d}{2})} \qquad V(d) = rac{2\pi^{rac{d}{2}}}{d\Gamma(rac{d}{2})}$$

Properties of the Unit Ball

Volume Near the equator

Theorem

For $c\geq 1$ and $d\geq 3$, at least a $1-\frac{2}{c}e^{-\frac{c^2}{2}}$ fraction of the d-dimensional unit has $|x_1|\leq \frac{c}{\sqrt{d-1}}$

Properties of the Unit Ball

Near Orthogonality

Theroem

Consider drawing n points $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ at random from the unit ball. With probability $1 - \mathcal{O}(1/n)$

1.
$$|\mathbf{x_i}| \le 1 - \frac{1 \ln n}{d} \quad \forall i$$

2.
$$|\mathbf{x_i} \cdot \mathbf{x_j}| \le \frac{\sqrt{6\ln n}}{\sqrt{d-1}} \quad \forall i \ne j$$