High Dimensional Space

Jayati Kaushik

St. Joseph's University, Bengaluru

Foundations of Data Science BDA2121

Random Projection

Consider the following projection $f: \mathbb{R}^d \to \mathbb{R}^k$: Pick k Gaussian vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k} \in \mathbb{R}^d$ with unit variance coordinates. For any vector \mathbf{v} , define the projection $f(\mathbf{v})$ by:

$$f(v) = (u_1 \cdot v, u_2 \cdot v, \dots, u_k \cdot v)$$

Applications

The Random Projection Theorem

Let \mathbf{v} be a fixed vector in \mathbb{R}^d and let f be defined as before. There exists c>0 such that for $\epsilon\in(0,1)$,

$$Prob(||f(\mathbf{v})| - \sqrt{k}|\mathbf{v}|| \ge \epsilon \sqrt{k}|\mathbf{v}|) \le 3e^{-ck\epsilon^2}$$

where the probability is taken over the random draws of vectors $\mathbf{u_i}$ used to construct f.

Johnson-Lindenstrauss Lemma

For any $0 < \epsilon < 1$ and any integer n, let $k \ge \frac{3}{c\epsilon^2} \ln n$. For any set of n points in \mathbb{R}^d , the random projection f has the proeprty that for all pairs of points $\mathbf{v_i}$ and $\mathbf{v_j}$, with probability at least 11 - 3/2n

$$(1-\epsilon)\sqrt{k}|\mathbf{v_i}-\mathbf{v_j}| \leq |f(\mathbf{v_i})-f(\mathbf{v_j})| \leq (1+\epsilon)\sqrt{k}|\mathbf{v_i}-\mathbf{v_j}|$$

High Dimensional Space St. Joseph's University, Bengaluru

Applications

Separating Gaussians