MCMC and MRFs

St. Joseph's University, Bengaluru

ML 2 BDA3321

Markov Random Field

An undirected graphical model is also known as Markov Randon Fields.

These are very useful in image and spatial analysis.

Examples of MRFs

1. Ising Model

This is a model that arose from physics, used to model the behaviour of magnets.

2. Hopfield Networks

This is an extension of the Ising model. The main application of Hopfield Network is in pattern completeion. This can also be interpreted as RNN.

3. Potts Model

This model is commonly used in image segmentation.

Monte Carlo Principle

The Monte Carlo Principle states that if you take iid samples $x^{(i)}$ from an unknown high dimensional distribution p(x), then as the number of sample gets larger the sample distribution will converge to the true distribution.

The Metropolis-Hastings Algorithm

- ► Given an initial value x₀
- ► Repeat:
 - ► Sample x^* from $q(x_i|x_{i-1})$
 - Sample *u* from the uniform distribution.

If
$$u < min(1, \frac{\tilde{p}(x^*)q(x^{(i)}|x^*)}{\tilde{p}(x^i)q(x^*)|x^i)})$$

set $x[i+1] = x^*$

Otherwise set x[i+1] = x[i]

Until you have enough samples.

Gibbs Sampling

- For each variable x_i :
 - ► Initialize $x_i^{(0)}$
- ► Repeat:
 - For each variable x_i :
 - sample $x_1^{(i+1)}$ from $p(x_1|x_2^{(i)},\ldots,x_n^{(i)})$ sample $x_2^{(i+1)}$ from $p(x_12|x_1^{(i)},x_3^{(i)},\ldots,x_n^{(i)})$

 - ► sample $x_n^{(i+1)}$ from $p(x_n|x_1^{(i)},...,x_{n-1}^{(i)})$
- Until you have enough samples.

References I

- [Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, 1997.
- [Mur12] Kevin P Murphy. *Machine Learning: A Probabilistic Perspective*. MIT Press, 2012.
- [Mar14] Stephen Marsland. Machine Learning, An Algorithmic Perspective. CRC Press, 2014.
- [GBC17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2017.