Perceptron Algorithms

St. Joseph's University, Bengaluru

ML 2 BDA3321

Neurons

Figure: https://readbiology.com/types-of-neurons/

Neorons

McCulloch and Pitts Neurons

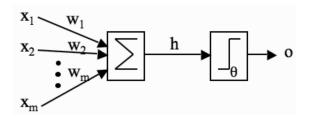


Figure: Neuron, [Mar14]

- Weighted Inputs
- 2. Adder
- 3. Activation Function

McCulloch and Pitt Neurons

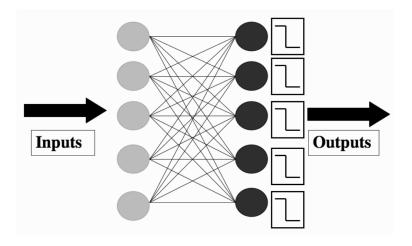
Components

Weighted Inputs

For each iput node, x_i a weight w_i is assinged.

Adder

$$h = \sum_{i=1}^{m} x_i w_i$$


Activation Function and Output

A threshold function decided if the neoron fires.

$$o = g(h) = \begin{cases} 1 & \text{if } h > \theta \\ 0 & \text{if } h \leq \theta \end{cases}$$

Neural Networks

Perceptron

Perceptron

- We label weights for neurons as w_{ij}; where i is the index running over number of inputs, and j index runs over number of neurons.
- To check if a neuron fires or not, we use adder and activation function as defined on slide 4.
- ▶ The output is a vector of 0s and 1s.
- Compare this pattern to the target.

Perceptron

Training the perceptron

Learning Rate

$$w_{ij} \leftarrow w_{ij} - \eta(y_j - t_j) \cdot x_i$$

Bias Input

Add a fixed non zero input weight.

Perceptron

The Perceptron Algorithm

Initialize:

- Set all of the weights to small random numbers.

Training:

For T itereations or until all outputs are correct
For each input vector

Compute the activation of each neuron j using

$$y_{j} = g(\sum_{i=0}^{m} w_{ij} x_{i}) = \begin{cases} 1 \text{ if } \sum_{i=1}^{m} w_{ij} x_{i} > 0\\ 0 \text{ if } \sum_{i=1}^{m} w_{ij} x_{i} \leq 0 \end{cases}$$

Update each weight individually using

$$w_{ij} \leftarrow w_{ij} - \eta(y_i - t_i) \cdot x_i$$
.

Recall:

Compute the activation of each neuron j using:

$$y_j = g(\sum_{i=0}^m w_{ij} x_i) = \begin{cases} 1 \text{ if } w_{ij} x_i > 0 \\ 0 \text{ if } w_{ij} x_i < 0 \end{cases}$$

References I

[Mar14] Stephen Marsland. *Machine Learning, an algorithmic perspective*. CRC Press, 2014.