Facets of Data

St. Joseph's University, Bengaluru

Basics of Data Science

Structured Data

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0				Braund, Mr. Owen Harris	male	22.0			A/5 21171	7.2500	NaN	
1				Cumings, Mrs. John Bradley (Florence Briggs Th								
2				Heikkinen, Miss. Laina	female				STON/O2. 3101282		NaN	
3				Futrelle, Mrs. Jacques Heath (Lily May Peel)					113803			
4				Allen, Mr. William Henry	male				373450		NaN	
5				Moran, Mr. James		NaN			330877	8.4583	NaN	
6				McCarthy, Mr. Timothy J	male	54.0			17463	51.8625	E46	
7				Palsson, Master. Gosta Leonard					349909		NaN	
8				Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female				347742		NaN	
9				Nasser, Mrs. Nicholas (Adele Achem)							NaN	
10				Sandstrom, Miss. Marguerite Rut	female				PP 9549	16.7000		
11				Bonnell, Miss. Elizabeth								
12				Saundercock, Mr. William Henry	male				A/5. 2151	8.0500	NaN	
13				Andersson, Mr. Anders Johan							NaN	
14				Vestrom, Miss. Hulda Amanda Adolfina	female				350406	7.8542	NaN	
15				Hewlett, Mrs. (Mary D Kingcome)							NaN	
16				Rice, Master. Eugene	male				382652		NaN	
17				Williams, Mr. Charles Eugene		NaN					NaN	
18				Vander Planke, Mrs. Julius (Emelia Maria Vande	female				345763	18.0000	NaN	
19	20	1	3	Masselmani, Mrs. Fatima	female	NaN	0	0	2649	7.2250	NaN	С

Unstructured Data

SHAP (SHapley Additive exPlanations)

#SHAP #shapley #interpretableai #LIME #KernelSHAP #TreeSHAP [[Shapley]]

The goal is to explain the prediction of an instance x by computing the contribution of each feature to the prediction. The players can also be groups of features. For example in images, pixels can be grouped into super pixels and the payoff distributed aming them. The extra thing here is an additive feature attribution method; a linear model, $g(z') = \phi_0 + \sum_{j=1}^M \phi_j z_j$, where g is the explanation model, $(z' \in 0, 1^M)$ is the coalition vector M is the maximum coalition size and $\phi_j \in \mathbb{R}$ is the feature attribution for a feature j, the Shapely values. Terminoligy: "coalition vector" = "simplified features"

For x, the instance of interest, the coalition vector x' is a vector of all 1's, i.e., all feature values are "present". The formula simplifies to $g(x')\phi_0 + \sum_{i=1}^M \phi_i$ "

Properties

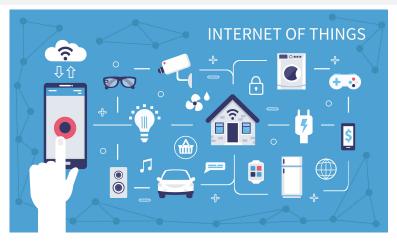
- * SHAP satisfies Efficiency, Dummy, Symmetry, and Additivity
- 1. **Local Accuracy** $f(x) = g(x') = \phi_0 + \sum_{i=1}^{M} \phi_i x_{i'}$
- 2. **Missingness** $x_{j'} = 0 \implies \phi_j = 0$ This means that missing feature gets an attribution of 0.
- 3. **Consistency** Let $f_x(z') = f(h_x(z'))$ and z'_{ij} indicate that $z_{i'} = 0$. For any two models f and f' that satisfy: $f_{x'}(z') f_{x'}(z'_{ij}) \geq f_x(z') f_x(z'_{ij}) \forall z \in 0, 1^M \text{ then } \phi_j(f', x) \geq \phi_j(f, x)$

Natural Language

NLP

This is an example of NL data. NLP problems are usually hard to solve. Human language tends to be ambigous by nature. Different language and dialects used by humans across the globe further complicate this.

Machine-generated Data



Examples

Web server logs, Call detail records, Network event logs,

Graph-Based or Network Data

Audio, Image and Video

