Building the Models

St. Joseph's University, Bengaluru

Basics of Data Science

Data Modeling

Data Modeling involves the following steps:

- 1. Model and variable selection
- 2. Model execution
- 3. Model diagnostic and model comparision

Model and Variable selection

When doing model and variable selection one must think about:

- 1. Must the model be moved to a production environment and, if so, would it be easy to implement?
- 2. How difficult is the maintenance on the model: how long will it remain relevant if left untouched?
- 3. Does the model need to be easy to explain?

Model Execution

After choosing model and required variables, we must implement the model in code.

Model Execution

Example 1

```
import statsmodels.api as sm
import numpy as np
predictors = np.random.random(1000).reshape(500,2)
target = predictors.dot(np.array([0.4, 0.6])) + np.random.random(500)
lmReqModel = sm.OLS(target, predictors)
result = lmReqModel.fit()
result.summary()
                               Shows model
                               fit statistics.
```

Imports required Python modules.

Fits linear regression on data.

Creates random data for predictors (x-values) and semi-random data for the target (y-values) of the model. We use predictors as input to create the target so we infer a correlation here.

Model Execution

Example 1

```
Imports modules.
                                                                        Creates randon
from sklearn import neighbors
                                                                        data and semi-
predictors = np.random.random(1000).reshape(500,2)
                                                                       target data bas
target = np.around(predictors.dot(np.array([0.4, 0.6])) +
                                                                        predictor data.
          np.random.random(500))
clf = neighbors.KNeighborsClassifier(n neighbors=10)
                                                                Fits 10-nearest
knn = clf.fit(predictors, target)
                                                                neighbors model.
knn.score(predictors, target)
                                             Gets model fit score: what
                                             percent of the classification
                                             was correct?
```

Model Diagnostics

How do you check model performance? Example:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

	n	Size	Price	Predicted model 1	Predicted model 2	Error model 1	Error model 2
	1	10	3				
80% train	2	15	5				
	3	18	6				
	4	14	5				
	800	9	3				
	801	12	4	12	10	0	2
	802	13	4	12	10	1	3
	999	21	7	21	10	0	11
20% test	1000	10	4	12	10	-2	0
			Total				110225