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Chapter 1

Parameter estimation

Let X be a random variable with values in X and assume that the distribution
L(X) is known upto some paramter θ; i.e.

L(X) = PXθ = {Pθ : θ ∈ Θ} Θ = paramter space

Here, we assume that Θ ⊂ Rd for d ≥ 1 and X = (X1, X2, . . . , Xn) with
independent random variables Xi. Based on the realization x = (x1, x2, . . . xn)
we want to find the value of θ.

Defintion 1.0.1. 1. A statistic T is a function on X which does not depend
on the unknown parameter theta.

2. A statistic T (X1, X2, . . . , Xn) : X → (Θ) = {g(θ) : θ ∈ Θ} is called an
estimator. We will write

ˆg(θ)n := T (X1, X2, . . . Xn)

for the estimator w.r.t sample size n.

3. The value T (X1, X2, . . . , Xn) taken for the observations x1, x2, . . . , xn is
called an estimate.

Remark:
Since the distribution of X is determined by the parameter θ, we will write
Pθ(X ∈ B) and Eθ[g(X)] for the probabilities and expectations calculated under
the assumption that θ is the true parameter of the distribution of X. Example
0
Let X = {0, 1}n and X = (X1, X2, . . . , Xn) with X1, X2, . . . , Xn iid with

P (Xi = 1) = p and P (Xi = 0) = 1− p

p can be interpreted as the probability of success in Bernoulli experiment. Then
θ = p, Θ = [0, 1] and L(X) ∈ {Pθ : θ ∈ Θ} where

Pθ({(x1, x2, . . . , xn)}) =

n∏
i=1

P (Xi = xi) = θs(1− θ)n−s
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6 CHAPTER 1. PARAMETER ESTIMATION

with s =
∑n
i=1 xi

Goal: Estimate θ = p
Guess: p̂ = s

n . NOTE: The random variabel S =
∑n
i=1Xi has a binomial

distribution with parameter p,L(S) = B(n, p).

1.1 Properties of Estimators

In this section we attempt to study some properties of a ”good” estimator.
T (X1, X2, . . . , Xn) ≡ 5 is an estimator. But this is not a ”good” estimator;
it does not make sense in any applicatins. So, we try to introduce several
properties of ”good” estimators, as well as measures of quality an estimator.

1.1.1 Highest Concentrations and MSE

Defintion 1.1.1. 1. If T1 and T2 are 2 estimators of parameter θ and P (θ−
δ < T1 < θ + δ) ≥ P (θ − δ < T2 < θ + δ) ∀θ ∈ Θ and δ > 0 Then T1 is
preferable to T2 as an estimator of θ and T1 is said to be more concentrated
around θ than T2.

2. The highest concentration criteria states that the estimator that has the
highest concentration is the best.

Let T2 be any constant, say c. Then in definition 1.1.1 1, R.H.S. is unity
for all θ for which δ > |c − θ| Then for the best estimator, L.H.S. should also
be unity for θ for which δ > |c − θ|. Hence a best estimator according to this
criteria does not exist.

Defintion 1.1.2. The Mean Squared Error of an estimator T is defined as
Eθ[T − θ]2

Defintion 1.1.3. If T1 and T2 are 2 estimators of θ, then T1 is better than T2

if
Eθ[T1 − θ]2 ≤ Eθ[T2 − θ]2∀θ ∈ Θ

If the above is true ∀ T2 6= T1 then T1 is a best minimum MSE estimator of θ.

Comparision of MSE estimators is 2-dimensional. If T1 is a better estimator
of θ accorinding to definition 1.1.1 it is also better according to definition 1.1.3.
As before, let T2 be a constant c. THen from the definition 1.1.3 at θ = c,
R.H.S in definition 1.1.3 is 0. This implies Eθ[T1−θ]2 ≤ 0 at θ = c. This is only
possible if T1 = c. Hence, a best estimator according to this criteria is also not
possible. Hence, this criterion is commonly used for comparing two estimators,
but not for finding a best estimator.

1.1.2 Consistency

A reasonable criterion is that the quality of the estimator should improve with
increse in sample size. This leads us to the following definition.
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Defintion 1.1.4. A sequence Tn = Tn(X1, X2, . . . Xn), n ∈ N, of estimators for
g(θ) is called consistent if for θ ∈ Θ

Pθ(||Tn(X1, . . . , Xn)− g(θ)|| ≥ ε)n→∞−−−−→0 ∀ε > 0

That means that Tn(X1, . . . Xn) p
−→
g(θ) if L(X1, . . . , Xn) = Pθ,n for all n ≥ 1

Example 1
Let X1, X2 . . . be iid real valued random variables with E(Xi) = µ. Then, the

law of large numbers implies that µ̂ = X̄n is a consitent estimator. Consequently,

p̂ =
s

n

in example 1 is a consistent estimator.

1.1.3 Unbiasedness

Defintion 1.1.5. 1. The bias of an estimator θ̂ is given by

biasθ(θ̂) = Eθ(θ̂)− θ

2. An estimator with biasθ(θ̂) = 0, i.e.Eθ(θ̂) = θ, for all θ ∈ Θ is called
unbiased.

On average, an unbiased estimator estimates the correct parameter value,
i.e.,the estimator is centred correctly.

Theorem 1.1.1. Let X1, . . . , Xn be an iid with mean µ and variance σ2. Then
X̄n is an unbiased estimator for µ,

Ŝ2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2 and σ̂2
n =

1

n

n∑
i=1

(Xi − µ)2

are unbiased estimators for σ2.

Proof. Left as an excercise.

Example 2
An unbiased estimator does not necessarily have a lower MSE than a biased
one. For instance, if L(Xi) = N(µ, σ2) then

MSE(
n− 1

n
Ŝ2
n) < MSE(Ŝ2

n)

But n−1
n Ŝ2

n is biased and underestimates the true value.

Theorem 1.1.2. The MSE of θ̂ for θ ∈ Θ ⊂ R can be expressed as

MSEθ(θ̂) = Eθ[(θ̂ − θ)2] = varθ θ̂ + (biasθ θ̂)
2.
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Proof.

Eθ[(θ̂ − θ)2] = Eθ(θ̂
2)− [Eθ(θ̂)]

2 + [Eθ(θ̂)]
2 − 2Eθ(θ̂θ) + θ2 = varθ θ̂ + (biasθ θ̂)

2

The MSE of an unbiased estimator consequently reduces to it’s variance.
Consistency of a sequence of unbiased estimators can therefore be proven by
showing that their variance tends to zero.

We know from definition 1.1.1 and definition 1.1.3 that no uniformly con-
sistent estimator exists. So we restrict our class of estimators and look for the
best estimator within the that. Hence, we arrive at the following definition.

Defintion 1.1.6. An estimator T ∗n(X1, . . . , Xn) is called best unbiased estima-
tor of g(θ) ∈ R if it is unbiased and satisfies

varθT
∗
n(X1, . . . , Xn) ≤ varθTn(X1, . . . , Xn) ∀θ ∈ Θ

for all unbiased estimators Tn. T ∗n is also called uniform minimum variance
unbiased estimator (UMVUE) of g(θ).

Theorem 1.1.3. If Tn is a best unbiased estimator of θ it is almost surely
unique.

With this theorem we can not talk about the best estimator, as if it was
unique.

1.1.4 Sufficiency and Completeness

When using a statistic T to make inference on a parameter θ, two samples x and
y are considered equal if T (x) = T (y). Hence, T can be regarded as a means
of data reduction. This is not always reasonalbe (e.g., T ≡ 0). The task now is
to reduce data without losing any information about the parameter θ that we
want to estimate.

Defintion 1.1.7. Let X be a sample from a family PXθ . A statistic S is called
sufficient for θ ∈ Θ if

Pθ(X ∈ B|S(X) = t)

does not depend on the unkown parameter θ for all t with Pθ(S(X) = t) 6= 0.

Example 3
In Example 1, S(X) =

∑n
i=1Xi is a sufficient statistic for θ = p:

Pp(X1 = x1, . . . , Xn = x+ n|S(X) = k) =
Pp(X1 = x1, . . . , Xn = xn, S(X) = k)

Pp(S(X) = k)

=

0
∑n
i=1 xi 6= k

pk(1−p)n−k

(n
k)pk(1−p)n−k

= 1

(n
k)

otherwise

for all x1, . . . , xn ∈ {0, 1} and 0 ≤ k ≤ n.
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Theorem 1.1.4. Rao Blackwell Theorem
Let S be a sufficient statistic. For any unbiased estimator T (X) of g(θ) there
exists another unbiased estimator T̃ (S(X)) with

varθT̃ (S(X)) ≤ varθT (X)

Such an estimator is given by

T̃ (t) = Eθ[T (X)|S(X) = t]

An unbiased estimator that only depends on the information contained in S
is uniformly at least as good as that of T

Proof. varθ(X) = Eθ[(T (X)− g(θ))2]
= Eθ[(T (X)− T̃ (S(X)) + T̃ (S(X))− g(θ))2]
= Eθ[(T (X)− T̃ (S(X)))2] +varθT̃ (S(X)) + 2Eθ[(T (X)− T̃ (S(X)))(T̃ (S(X))−
g(θ))]
≥ varT̃ (S(X))

Defintion 1.1.8. A statistic S is called complete if for all functions g with
Eθ[g(S(X))] = 0 for all θ ∈ Θ we have

Pθ(g(S(X)) = 0) = 1 ∀θ ∈ Θ

Example 4
For binomial distribution, if parameter space is restricted to Θ = (0, 1), then
the statistic S(X) =

∑n
i=1Xi is complete.

Theorem 1.1.5. Lehmann - Scheffé
Let S be a sufficeint and complete statistic for a family of distributions. If there
exists an unbiased estimator T of g(θ) then T̃ (S(X)) with T̃ (s) = Eθ[T (X)|S(X) =
s] is the almost surely unique best unbiased estimator.

1.2 Finding Estimators

1.2.1 Method of Moments

1.2.2 Maximum Likelihood Estimators

Defintion 1.2.1. Let x be a realization of X with values in X ∈ {Pθ : θ ∈ Θ}.
If Pθ(X = x) > 0 the likelihood function is defined as

L(θ|x) = Pθ(X = x) x ∈ X , θ ∈ Θ

If the estimaotr θ̂ satisfies

L(θ̂(X)|X) = maxθ∈ΘL(θ|X)

it is called maximum liklihood estimator(MLE) of θ
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NOTE:
It is often convinient to use the log-likelihood function

l(θ|x) = logL(θ|x) x ∈ X , θ ∈ Θ

Example 5
Let X − 1, . . . , Xn be iid N(µ, σ2)-distributed. Then,

L(µ, σ2|X1 . . . , X2) =

n∏
i=1

1√
2πσ

exp(− (Xi − µ)2

2σ2
)

= (2πσ2)
−n
2 exp(− 1

2σ2

N∑
i=1

(Xi − µ)2)

Differentiating w.r.t σ2 and µ yeilds

∂l

∂µ
(µ, σ2|X1 . . . , X2) =

1

σ2

n∑
i=1

(Xi − µ)2

∂l

∂σ2
(µ, σ2|X1 . . . , X2) = − n

2σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2

Setting these to zero, we obtain

µ̂ = X̄n

σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2

NOTE:

• We know that σ̂2 is a biased estimator of σ2. Nevertheless, we would
prefer this estimator because

MSE(σ̂2) ≤MSE(Ŝ2)

.

• In general ML Estimators are not unique.

• It can be shown that MLEs are consitent estimators.

• MLEs are also min max estimaotrs, i.e., they minimize maximum risk.

• MLEs are also invariant.

1.2.3 EM Algorithm
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